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Volcano EarlyWarning Systems (VEWS) have become a research topic in order to preserve human lives andma-
terial losses. In this setting, event detection criteria based on classification using machine learning techniques
have proven useful, and a number of systems have been proposed in the literature. However, to the best of our
knowledge, no comprehensive and principled study has been conducted to compare the influence of the many
different sets of possible features that have beenused as input spaces in previousworks.Wepresent an automatic
recognition system of volcano seismicity, by considering feature extraction, event classification, and subsequent
event detection, in order to reduce the processing time as a first step towards a high reliability automatic
detection system in real-time. We compiled and extracted a comprehensive set of temporal, moving average,
spectral, and scale-domain features, for separating long period seismic events from background noise. We
benchmarked two usual kinds of feature selection techniques, namely, filter (mutual information and statistical
dependence) and embedded (cross-validation and pruning), each of them by using suitable and appropriate
classification algorithms such as k Nearest Neighbors (k-NN) and Decision Trees (DT). We applied this approach
to the seismicity presented at Cotopaxi Volcano in Ecuador during 2009 and 2010. The best results were obtained
by using a 15 s segmentation window, feature matrix in the frequency domain, and DT classifier, yielding 99% of
detection accuracy and sensitivity. Selected features and their interpretation were consistent among different
input spaces, in simple terms of amplitude and spectral content. Our study provides the framework for an
event detection system with high accuracy and reduced computational requirements.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Volcano monitoring systems have been deployed as an attempt to
mitigate risks, to forecast eruptions, and to assess hazards, due to the
necessity of safeguarding human lives and resources. These monitoring
systems use principled information related to ground deformation
(Dzurisin, 1980; Dvorak and Dzurisin, 1997; Voight et al., 1998;
Bonaccorso et al., 2006), gas flux (Baubron et al., 1991; Galle et al.,
2003; Lewicki et al., 2003), seismicity (McNutt, 1996; Chouet and
Matoza, 2013; Sparks, 2003), and other factors, as main monitoring
measurements to determine the activity of volcanoes. In this context,
seismology is an important and effective tool for monitoring volcanoes,
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since seismicity is the fastest andmost commonly usedmethod in order
to detect changes on volcanoes, by assessing earthquakes and other
ground vibrations sensed by the seismometers or geophones networks
(McNutt, 2000; Sicali et al., 2015; Papadimitriou et al., 2015). The events
recorded in these systems present differences in their seismicwave pat-
terns so their seismological signature can be interpreted by analysts to
identify different types of events. For instance, most volcanoes present
Volcano Tectonic (VT) earthquakes, Long Period (LP) events, Tremors
(TRE), and Hybrid (HYB) events. Other non-volcanic originated events,
such as Lightnings (LGH), can be occasionally recorded by seismometers
(Behnke et al., 2013).

Several techniques have been developed for automatic identification
of events, such as stochastic processes analysis,mathematicalmodeling,
and signal processing in time, frequency, and scale domains (Scarpetta
et al., 2005). The latter refers to the use of the wavelet transform for a
time-scale domain analysis of signals with fast changing spectral con-
tents, usingwavelets it is possible to represent a signal in a time and fre-
quency response scale where any event contained in the signal will
mark an entire region in the time-scale plane, solving therefore the
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resolution problempresented by the Fourier transform in the frequency
domain. The stated advantage of using wavelets compared to Fourier
transform is the trade-off between frequency and time resolution at dif-
ferent frequencies. Special attention has been put in classification tech-
niques fromMachine Learning Theory, since thesemethods are capable
of describing in detail patterns from different types of events, as it will
be summarized latter in Section 2. However, to the best of our knowl-
edge, no comprehensive and principled study has been conducted in
previous works to compare the influence of the many different sets of
features that have been used to approximate the input space, defined
in terms of the possible values that the input parameter can have.

The aim of this work is to present an automatic recognition system
for volcano seismicity, by considering all the stages of the process in-
cluding feature extraction, feature selection, and event classification,
and in order to provide us with a high-fidelity event detection, as a
first step to an automatic detection system in real-time. Our primary hy-
pothesis is that a carefully designed feature extraction with a suitable
and appropriate machine learning technique will reduce the processing
time andwill avoid overfitting. We address here the optimal design of a
detection system, based on classification techniques, for separating LP
seismic events from seismic background noise with high accuracy,
since LP events often precede volcanic eruptions and they are according-
ly used in forecasting (Chouet and Matoza, 2013; Chouet, 1996;
Trombley and Toutain, 2005; Lyons et al., 2014; Bean et al., 2014;
Cusano et al., 2015; Syahbana et al., 2014). The classification among
the other types of events is beyond our scope at this stage, but it could
be specifically addressedwith the proposed approach.Webenchmarked
two commonly used feature selection techniques, namely,filter and em-
bedded, each of them in a suitable and appropriate classification algo-
rithm, namely, k Nearest Neighbors (k-NN) and Decision Trees (DT).

Our study refers to Cotopaxi, an active volcano, located in the so-
called Ring of Fire at Ecuador, in which a permanentmonitoring system
(24 h/7 days a week) has been previously deployed (Ortiz Erazo, 2013).
Its activity produced over 100MB of data per day during 2009 and 2010,
which means an average of 21 and 17 events per day, respectively.
There are 16 seismological stations deployed at Cotopaxi Volcano as
highlighted in Section 3, therefore, expert scientists must daily analyze
the vertical component of 16 seismograms of volcanic signals by visual
inspection in order to label and classify the events. Currently, its activity
is increasing and presents 130 events on average per day, too many re-
cords are generated during periods of high volcanic activity; therefore
data assessment can become an extremely slow process, which can
also cause damming of information (Newman and Jain, 1995; Mery
and Medina, 2004).

The rest of the paper is organized as follows. Section 2 summarizes
previous works and results about the automatic classification of seismic
events by using machine learning techniques. Section 3 describes the
dataset used in this work, which were collected at Cotopaxi Volcano.
Section 4 describes the proposed approach and the experimental
study including feature extraction and event detection. Section 5 pre-
sents the results obtained in automatic classification and detection pro-
cesses for different segmentationwindows andwith different classifiers.
Finally, Section 6 presents the discussion and some concluding
conclusions.

2. Detecting seismic events

One of themain goals of volcanomonitoring institutions around the
world is to understand the behavior of volcanoes, in order to forecast a
possible or imminent eruption for safeguarding lives, which is achiev-
able by sensing and distinguishing the increase of volcanic events. In re-
lation to this, the analysts visually identify seismic events received from
remote seismometers by actually using digital signal processing tech-
niques both in the time and the frequency domain tomake this process
more efficient, so event data, such as timestamps of start and end, time
duration, and arrival times, can be stored for future reference.
In this context, several techniques have been developed to support
vulcanologist in the automatic classification process, and some authors
have used supervised (Falsaperla et al., 1996; Langer et al., 2003,
2006; Curilem et al., 2009) or unsupervised (Messina and Langer,
2011; Esposito et al., 2008; Ohrnberger, 2001) learning techniques, in
order to distinguish among two or more classification groups of events.

In Ibáñez et al. (2009), for example, Etna and Stromboli volcanoes
were studied in terms of VT and TRE events for the first volcano, and
background noise and Very Long Period (VLP) events for the second
one. Authors found a total of 39 data parameters of main temporal
and spectral characteristics, including coefficients of the time evolution
of the signal and the energy in a frequency band, by using Hidden Mar-
kovModels (HMM)as classifier, yielding 86% and 84% of successful clas-
sification rates, respectively.

Meanwhile in Álvarez et al. (2012), a 1 to 25Hz band-pass filter, first
using a time windowing of 4 s and then extended it to 8 s was used to
extract temporal and spectral characteristics from data obtained at Coli-
ma Volcano in Mexico, yielding two proposed feature vectors with 39
and 84 features, extended the feature vector defined in Ibáñez et al.
(2009) by considering the presence or absence of harmonics and the
spectral envelope. Discriminative Feature Selection (DFS) based on the
Minimum Classification Error (MCE) criterion, and a Gaussian Mixture
Model (GMM) were used, which reduced the original sets to 14 and
10 features, respectively. The misclassification percentage was im-
proved for the first feature vector set from 24% to 16%, and for the ex-
tended feature vector from 28% to 14%. However, the main features,
which improved the results, were not mentioned in such work.

A feature extraction and a subsequent feature selection steps were
developed for Nevado del Ruiz Volcano in Colombia (Cárdenas-Peña
et al., 2013), considering VT, LP, TRE, andHYB events. In thiswork, a fea-
ture selection strategy was developed based on the relevance of time
variant features, i.e., the most significant set of features or those with
the greatest contribution to the event, and the results were compared
to the use of HMM and k-NN. With this approach, the classification
error rate was improved from 22% to 12% when using k-NN instead of
HMM. Another system was defined in Cortés et al. (2014), which used
the GMM classifier, which obtained a baseline recognition rate of 92%
by using the feature vector with the main features via DFS at Deception
Volcano Island in Antarctica.

Although previous works have demonstrated the possibilities of
using machine learning techniques in this setting, the literature lacks
of supportive evidence about which are the main design parameters
to be considered in each stages for signal preprocessing, feature extrac-
tion, feature selection, classification, and detection, especially for real-
time or near-real-time detection systems.

3. Dataset description

The Instituto Geofísico de la Escuela PolitécnicaNacional (IGEPN) is the
institution responsible for monitoring the seismic activity in Ecuador.
IGEPN has installed a high quality seismometer network, covering
near 70% of the country. The monitoring stations collect data every
day and continuously transmit them to a volcano observatory, which
is located 40 km from the Cotopaxi Volcano. These data are transmitted
by using radio links in the UHF band.

Cotopaxi is a snow-capped volcano located at latitude 00° 41′ 05″ S
and longitude 78° 25′ 54.8″ W in the Andean mountain region of
Ecuador. We have chosen this particular volcano for our study given its
high hazard and risk status of future eruptions. Cotopaxi has experienced
5 eruptive cycles with 13 significant eruptions since 1534, and past erup-
tions have produced pyroclastic flows, ash and lapilli falls, lava flows, and
far reaching lahars (Hall and Mothes, 2008). The Cotopaxi Volcano is lo-
cated 40 km from Quito and near to the city of Latacunga, and a potential
eruption will directly affect about 800,000 people living in the surround-
ing area of the volcano. However, being also so close to Quito, a citywith a
population of over two million inhabitants, the number of people that



Fig. 1. Location of Cotopaxi Volcano and the deployed seismological stations. Dataset has
been taken from the VC2 BB station.
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may be affected by an eruption is extremely high. Furthermore, the Coto-
paxi Volcano is located in the center of Ecuador, and an eruptionwill be a
national catastrophe ofmajor proportions, since it will affect all regions of
the country.Major highways cross nearby and an eruptionwill directly af-
fect traffic connections between all regions. The cost for the government
will be extremely high.

As depicted in Fig. 1, the IGEPN currently has installed at Cotopaxi
Volcano: (a) five short period (SP) seismological stations (PITA, NAS2,
VC1, CAMI, and TAMB), four of them with vertical component sensors
and two of them with three components sensors, and all of them with
response frequency range of 1–50 Hz; (b) eleven broadband (BB) sta-
tions (TOMA, SUCR, BVC2, BREF, BNAS, BTAM, BMOR, SLOR, SRAM,
BRRN and VCES), with response frequency range of 0.1–50 Hz
(Córdova Regalado, 2013). Data used in our studywere recorded during
2009 and 2010 at the VC2 station, located 3 km from the Cotopaxi sum-
mit, by using a triaxial broadband seismometer CMG-40T Güralp with a
sensitivity of 1600V/ms−1. A Short-Term/Long-TermAverage ratio trig-
gering algorithm is used by this seismometer to detect the seismic activ-
ity. This algorithm evaluates the ratio of short-to-long-term energy
density, for further details on theoretical and algorithmic details, see
Withers et al. (1998). Then, the seismograms are recorded in files of
12,000 s duration, which are digitized at 100 Hz sampling rate by
using a 12 bit analog to digital converter. Data were taken from
the VC2 broadband station in the vertical axis, since this site was
less noisy than others, and since data obtained from this station
displayed the highest signal to noise ratio, with high acquisition quality
and reliability. Dataset consisted of 759 LP, 116 VT, 30 HYB, and 9 TRE
events.

Fig. 2(a) shows some examples of typical events at Cotopaxi
Volcano, where we can observe a peak around 3000 s corre-
sponding to an LP event, with a typical duration between some
few seconds to more than 1 min. These events exhibit different
spectral peaks in the frequency range between 2 and 7 Hz, as
depicted in Fig. 2(b) and (c), respectively. Additionally, we can
observe another peak around 6000 s corresponding to a LGH
event, which presents a typical spectrum in the frequency range
between 17 and 21 Hz, as shown in Fig. 2(e), and another prom-
inent peak at 9000 s corresponding to a VT event with a typical
duration below 30 s and a spectral content around 9 Hz, as
depicted in Fig. 2(f) and (g), respectively. Note that since seis-
mometers are extremely sensitive, very small variations produced
by wind and other surface effects can also be sensed, hence pro-
ducing background noise whose main contribution is in the form
of white noise, a random signal with a constant power spectral
density.

4. Methodology

4.1. Preprocessing stage

Fig. 3 shows the schemeof the proposed system,which can be divid-
ed into 4 components. Thefirst one consists of a preprocessing stage, the
second one accounts for both feature extraction and feature selection,
which are necessary in order to reduce both the amount of data and
the processing time required, and to avoid overfitting. The third compo-
nent includes some degree of intelligence by using machine learning
techniques in order to define a model to classify new data. As men-
tioned earlier, our first approach to develop the event detector will be
to focus only on LP events, therefore the last component will detect LP
events, and allowing the determination of the performance of the entire
system for both, classification and detection capabilities.

Initial spectral analysis of the seismic signals shows a permanent
peak located at 0.2 Hz, most probably related to sea microseisms events
(Kenneth, 2001). The main portion of spectral content for LP events is
known to be between 2 to 7Hz, therefore a 128th order band-pass finite
impulse response (FIR) with bandwidth (1, 15) Hz was applied to each



Fig. 2. Examples of seismicity records at Cotopaxi Volcano: (a) the threemost common event types; (b) a LP event is presented around 3000 s; (c) typical LP spectrum; (d) a LGH event is
presented near to 6000 s; (e) typical LGH spectrum; (f) a VT event is presented around 9000 s; (e) typical VT spectrum.
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volcano seismic record ri, ri∈ℜl, where l is the number of samples in the
records, and with i ∈ 1,…,N, where N is the number of available record-
ings. This step also eliminated LGH events, whose spectral content is
above 17 Hz. Then, classical centering and scaling of the data was used
for each ri, giving the z-score normalized recording, as follows,

ri ¼
ri−μ i

σ i
; ð1Þ
where ri are the normalized recordings, and μi andσi are their mean and
standard deviation, respectively. Finally, different sliding window
lengths ofw sampleswere applied to eachriwithout overlapping, yield-
ing j ¼ l

w segments for each recording. This provided us with a win-
dowed signal matrix, Si, defined as follows,

Si ¼ sTi;1; s
T
i;2;…; sTi; j

h iT
; ð2Þ



Fig. 3. Scheme for the event detection based on classification.
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where si,j are the windowed segments of the i-th recording. Then, the
datamatrix is given by the signal matrices from all the available record-
ings, this is,

S ¼ ST1; S
T
2;…; STN

h iT
: ð3Þ

Note that this datamatrix consists of samples from the same and dif-
ferent signals, which has to be taken into account for themachine learn-
ing free parameter search in order to avoid overfitting.

4.2. Feature extraction and selection stage

We developed a feature extraction framework in order to identify a
set of relevant features from each row of matrix S, giving a feature vec-
tor xi,j = g(si,j), where g() is the feature extraction operator for which
different options can be scrutinized, and they are summarized next.

In order to obtain matrices in the time domain, a simple data matrix
was considered, corresponding to original matrix S with different seg-
mentationwindow sizesw. In addition, another time datamatrix corre-
sponding to ti,j = gM A(si,j) was regarded, where gM A() is the signal
operator squaring each sample and smoothing with a 1st order Moving
Average (MA) filter (Chen and Chen, 2003). Themain parameters of the
MA filter considered the previous values ofw, in order to maximize the
variations among data and to cancel low values, and 50% of window
overlapping. Then, our envelope-band yielded for each recording,

Ti ¼ tTi;1; t
T
i;2;…; tTi; j

h iT
; ð4Þ

and the data matrix was often given by signal matrices Ti from all the
available recordings, this is,

T ¼ TT
1; T

T
2;…; TT

N

h iT
: ð5Þ

Both matrices had m rows and n columns, given by m = N × j in-
stances and n = w features.

In order to obtain matrices in the frequency domain, the Power
Spectral Density (PSD) with Welch method was obtained for each row
of matrix S, yielding feature vectors fi,j = gh(si,j), where gh is the opera-
tor yielding the PSD of the row time vector. The main parameters of the
Fast Fourier Transform (FFT) were 50% of window overlapping, each
Table 1
Matrix size in terms of the selected segmentation value w.

Matrix w = 5 s w = 15 s w = 30 s

S, T 60,720 × 500 20,240 × 1500 10,120 × 3000
F 60,720 × 513 20,240 × 513 10,120 × 513
G 60,720 × 257 20,240 × 257 10,120 × 257
W 60,720 × 508 20,240 × 824 10,120 × 1621
section was windowed with a Hamming window with length equal to
the segmentation values, and1024 points of FFT for frequency represen-
tation resolution, yielding

Fi ¼ fTi;1; f
T
i;2;…; fTi; j

h iT
: ð6Þ

The feature matrix was then given by signal matrices Fi from all the
available recordings. In order to have a moderate resolution in frequen-
cy and time, we limited to 512 points of FFT andmaintained the other of
parameters, yielding gi,j = gn(si,j), where gn is the operator yielding the
PSD of the row time providing with moderate resolution for each re-
cording, i.e.,

Gi ¼ gTi;1;g
T
i;2;…;gTi; j

h iT
; ð7Þ

and the data matrix was given by signal matrices Gi from all the avail-
able recordings. Bothmatrices hadm=N× j instances,whilst the num-
ber of featureswasn ¼ n f

2 þ 1,where nf are thepoints of the FFT, yielding
513 features for high resolution and 257 features for moderate
resolution.

In order to obtain datamatrices in the scale domain, awavelet trans-
formwas applied to each row of matrix S, yieldingwi,j = gw(si,j), where
gw() is the operator applying a 10th order symlet as mother wavelet, by
following the consideration of similarity (Ngui et al., 2013), and with
details of decompositionwith level 4, since this level has themain ener-
gy component of the signal. This yielded for each recording

Wi ¼ wT
i;1;w

T
i;2;…;wT

i; j

h iT
; ð8Þ

and the data matrix was given by all the signal matricesWi from all the
available recordings. Thismatrix hadm=N× j instances and n features,
corresponding to the coefficients at 4th level of decomposition accord-
ing to w value.

Note that, at this point, five types of feature matrices have been de-
fined, two in the time domain (S, T), two in the frequency domain (F,G),
and one in the scale domain (W).

Feature selection techniques are often used to identify the most rel-
evant features, which are able to enhance classification performance. In
this setting, we benchmarked two commonly used techniques, namely:
filter and embedded. Filter algorithms are independent of the classifier
by using a search criterion function, commonly a heuristic method
resulting from practical procedures, based on general features like mu-
tual information, correlation, or statistical dependencewith the variable
to predict. The embedded methods, in the other hand are immersed in
the classification algorithm, which realizes a recursive partitioning of
the data by splitting it into sub-sets based on features that are the
most useful in distinguishing between different data classes. The pro-
cess is termed recursive since each sub-setmay in turn be split an indef-
inite number of times until a particular stopping criterion is reached.



Fig. 4. Segmentation comparison as function of k for classification (solid line) and detection (dotted line), in terms of A (blue), P (green), R (red), and S (cian).
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Both methods were applied in order in order to obtain matrices
S′, T′, F′, G′, and W′, which contain most of the discriminative
information required to classify the events while avoiding
overfitting.

We are using a pre-labeled dataset for our study, which was manu-
ally labeled by human analysts and provided to us by IGEPN. We are
working with supervised learning, and therefore we need a known
dataset for training the algorithms. We assumed that this dataset was
correctly labeled, and we adopted it as ground truth being used for val-
idating the learning algorithm.

Each segment si,j was automatically labeled as either class yi,j =+1
or yi,j=−1, depending if the signal contained by the segment is part or
not of a LP event according to their timestamps and the corresponding
label of the signal in the dataset, therefore consecutive segments si,j
with label +1 will contain the entire LP event.

4.3. Classification algorithms

We considered supervised learning and used k-NN and DT as
machine learning techniques, which are summarized next.

k-NN is one of themost basic instance-based classification methods,
it assumes all instances corresponding to points in the spaceℜn, where
n is the dimensionality of the input space belonging towell known clas-
ses or clusters, by forming a reference model in which a new instance
vector will be assigned to the more frequent class or cluster belonging
to their k nearest neighbors (Mitchell, 1997). The nearest neighbors of
an instance are often defined in terms of the standard Euclidean dis-
tance. Let x be an arbitrary instance described by feature vector
[a1(x),a2(x),…an(x)]T, where ar(x) denotes the value of the rth attribute
of instance x. The distance between two instances xi and xj is defined to
be d(xi,xj), giving

d xi;x j
� �

≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

ar xið Þ−ar x j
� �� �2

vuut : ð9Þ

The tuning of the k-NN classifier is carried out by calculating the op-
timal number of neighbors k, which is the free parameter for this classi-
fier, which allows us to obtain the best performance in the validation
set.

DT is a non-parametric supervised learningmethod used for classifi-
cation and regression, and one of the most widely used methods for in-
ductive inference (Bishop et al., 2006). The goal of this method is to
create a treemodel formed by a root and several leaves, based on condi-
tions in order to categorize a set of consequently rules and to select the
next branch, which can predict the value of a target variable by learning
simple decision rules inferred from the data features. The paths from
root to leaf represent the classification rules and the outcome of each
leaf node is obtained after evaluating all the conditions along the path.
DT classifies new instances by sorting them down the tree from the
root to some leaf node, thereby providing the instance classification.
Each node in the tree specifies a rule of some attribute of the instance,
and each branch descending from that node corresponds to one of the
possible values for this attribute. The measures include the average
amount of information contained in each event. It is robust to noisy
data, and searches in a completely expressive hypothesis space and,
hence avoiding the difficulties of restricted hypothesis spaces. Small
rather than large trees are preferred, in order to promote classifiers



Fig. 5. Segmentation comparison with F matrix as function of k for classification (solid line) and detection (dotted line), in terms of A (blue), P (green), R (red), and S (cian).
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with good generalization capabilities. Currently, many algorithms have
been developed for learning DT, which obtain a top-down, greedy
search in the space of possible DT. The depth or leafiness of the tree is
the free parameter for this machine learning technique, and it has to
be adjusted formaximizing the classification performance in the valida-
tion set while avoiding overfitting to the training set.

4.4. Detection and performance

We developed an event detector based on the previously described
classification algorithms, given that the output of the classifiers predicts
a class y (either+1 or−1) for each segment si,j, and then LP events will
contain some si,j labeled with y = +1 depending on the w value. We
created a detection algorithm in order to improve the classification per-
formance, which was adjusted to detect LP events from background
noise based on verifying the labels and by marking the start and end
times of+1 or consecutive+1 output for signal windows in a given re-
cord. We identified a threshold of possible LP event duration, which
maximized the detection performance of the system for LP events.

Once a prediction model has been constructed, the training data set
is presented to the algorithm for calibration, and the classifiers will as-
sign a value for each new data instance (w segment). This value will
be either +1 for segments that the classifier considers are part of an
LP event or −1 for segments that the classifier judges are not part of
the LP event. A transition from a low to high value is considered the be-
ginning of an event, and similarly, the transition from a high to a low
value is considered the ending of the event. From these values the
time duration of a given event can be calculated. In the training stage,
the timestamps of possible events are compared with the real
timestamps of the events annotated in the training set, and the algo-
rithm automatically determines the time duration threshold that
maximizes the accuracy of the classifier. Possible eventswith timedura-
tion lower than this time thresholdwill not be considered as real events,
hence this post-processing stage (detector) will reduce the number of
false positives.

When trying to fit models to a dataset, the common advice is to par-
tition the data into three parts: training, validation, and test datasets, as
illustrated in Fig. 3. The training set is used to train themodel; the initial
model parameters are selected by choosing the parameters that mini-
mize the errors on the training set. After that, the parameters of the
model are tuned by minimizing errors on the validation set. Therefore,
a validation set, which is independent from the training set, is used for
parameter selection and to avoid overfitting. Finally, the performance
of the trained model is tested on the testing set. If the model is trained
on a training set only, it is very likely to get 100% accuracy and overfit,
resulting on a very poor performance on the testing set.

Hence, the proposed methodology was applied to the dataset from
Cotopaxi Volcano. In order to make comparisons, the entire dataset
was divided into training, validating, and testing sets, so that each set
consisted of 253 records. For testing and validating sets, the dataset
was split aleatory for each matrix by months, however, data indepen-
dency, a necessary condition for machine learning algorithms, was
guaranteed by assigning each si,j belonging to the same signal to differ-
ent sets. Additionally, a comparison between k-NN and DT classifiers
was performed. The experiments were carried out using Matlab
R2013a, on a Core I5 PC with 3.1 GHz and 4 GB RAM.

The classification and detection performancewasmeasured in terms
of Accuracy (A), Precision (P), Sensitivity or Recall (R), and Specificity
(S), which are defined as follows:

A %ð Þ ¼ NC

NT
� 100; ð10Þ



Fig. 6. Performance comparison of LP seismic detector for optimal observationwindoww selectionwhen considering k-NN classifier, andwith features inmatrix T. Example considering 5
continuous events (blue solid line) within the seismogram and using 2 different observationwindows (red dotted line). Insets (a), (c) and (e) show detection results using an observation
window ofw = 15 s, while insets (b), (d) and (f) show results with an observation window of w= 40 s. Detected events are denoted by the black solid line.
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P %ð Þ ¼ NTP

NTP þ NFP
� 100; ð11Þ

R %ð Þ ¼ NTP

NTP þ NFN
� 100; ð12Þ

S %ð Þ ¼ NTN

NTN þ NFP
� 100; ð13Þ
Table 2
Experimental results for detection by using k-NN classifier, withw=15 s, and validation/
test sets. The optimal values of k reported in the table are the optimum values that maxi-
mize the metrics performance.

Matrix k A (%) P (%) R (%) S (%)

S 11 99/96 100/97 18/12 100/99
T 351 97/96 100/60 40/18 100/99
F 241 97/99 78/93 39/98 99/99
G 271 97/99 87/92 33/92 99/99
W 11 96/99 60/62 18/40 99/99
where NC is the number of correctly classified patterns, NT is the total
number of patterns used to feed the classifier, NTP is the number of
true positives, NFN is the number of false negatives, NTN is the number
of true negatives, andNFP is the number of false positives.We calculated
these performance measures for each validation and test folds.
5. Results

5.1. Segmentation tuning

We worked with different values of window w, so the number of
segments for analysis directly depended of the chosen size of this win-
dow. For example, for a given record with a duration of 1200 s, if w =
15 s, then the number of segments is 80 for the entire record, mean-
while if w = 200 s is chosen, then the number of segments is only 6.
Therefore, the sizes of the matrices will be different.

Table 1 shows some examples of this variation in terms of the orig-
inal number of features and levels for different values of w. As it can
be seen, the number of instances increases for smaller values of w,
while the number of features depends directly on the value ofw, except



Fig. 7. Normalized weights variation of recording segments in the time domain by using MI (blue dotted line) and SD (red dotted line) methods. Inset (a) shows continuous smooth
changes on normalized weights as function of the relevant features; inset (b) shows that inflection changes are produced on normalized weights curve around the 200 and 600
features; insets (c) and (e) show the normalized weights variation according to the feature relevance in the time domain when using S matrix; insets (d) and (f) show the normalized
weights variation in the time domain, after the feature selection method has been applied, when using Tmatrix.
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for F and Gmatrices, which are independent of the value ofw since the
characteristics are constant.

We explored different values of w ranging from 5 s to 200 s (100
time samples correspond to 1 s), in order to set up the optimal value
maximizing the system performance. Fig. 4, for example, shows the re-
sults obtained when values of 15 s and 200 s were used for w. Perfor-
mance was evaluated in terms of both classification and detection by
using the k-NN classifier, however, the best results were obtained
when only T and Fmatriceswere used.Withw=15 s, the performance
in classification and detection was better than when using w = 200 s,
and values of less than 15 s were discarded since the algorithm took a
long time for processing (around 10 min), which would be unaccept-
able in order to satisfy real-time requirements.

We considered P and Rmetrics for setting up thew value. In terms of
classification, we obtained better results with T matrix and w = 200 s,
where values between 60% to 84% were obtained for R when
considering k of about 240, approximately, whilst P maintained its
value near to 99%, as depicted in Fig. 4(c). Meanwhile, we obtained bet-
ter results in terms of detection with Tmatrix and w= 15 s, as far as R
obtained values above 95% and P increasedwith k, reaching values close
to 99% (see Fig. 4(a)).

Considering all the performance metrics together, we concluded
that w = 15 s should be used as a good option for segmentation in the
time window. This value provides the best performance for both detec-
tion and correct classification, while allowing moderate computational
burden. This assessmentwas corroborated by Fig. 5, where it can be ob-
served that the performance metrics in detection were improved, and
themain parameter which allowed us to take a decisionwas R in detec-
tion (dotted-red). Fig. 5 shows that R in detection reaches its maximum
value when w = 15 s.

Nevertheless, we verified this value w = 15 s by additionally com-
paring these results with those obtained when w = 40 s, as seen in



Fig. 8.Normalized weights variations of recording segments in the frequency domain by usingMI (blue dotted line) and SD (red dotted line) methods. Insets (a) and (b) shows inflection
points on the normalizedweights curve around 225 and 450 features when using the F and Gmatrices, respectively; insets (c) and (e) show awell defined frequency band from 2 to 7 Hz
when using F matrix; insets (d) and (f) show that the same frequency band, but with less resolution, is also present when considering Gmatrix.
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Fig. 6. In Figs. 6(a) and (b), we can see a detection example of 5 events,
where we can determine a detection rate of 5/5 and 3/5 for each w, re-
spectively. Figs. 6(c) and (d) are the zoomed portion from 3000 s to
5000 s, and we can observe that the event was better followed with
w = 15 s compared to w = 40 s. With w = 40 s, the event seemed to
move in the segmentation window, and this effect made the detector
cannot identify the events, as shown in Fig. 6(e) and (f).
5.2. Results using k-NN classifier

We defined a minimum value of k following an empirical rule given
in Duda et al. (2012), which states that the value of k must be equal to
the squared root of n features. For our case, the minimum value of k
was 11when considering 1500 features of Smatrix. Once theminimum
value was defined, we selected a maximum k of 400 to have a wide
enough observation range.

The training set is used to determine the optimal values of k for each
matrix. Table 2 shows the results of detection based on classification
when considering the validation and the test sets. We observed better
results when using T, F, and G, than for the use of S and W matrices.
We observed also that S and W matrices needed 11 nearest neighbors,
whilst the rest of matrices used k above 200 nearest neighbors. The
best results were obtained in the frequency domain, and the difference
between F and G matrices was negligible in terms of A, P, and S, whilst
for R the differences were around 6%.

We used the feature selection strategy in order to identify the most
relevant p features that improved the processing time and its perfor-
mance. We worked with Mutual Information (MI) and Statistical Depen-
dence (SD) (Pohjalainen et al., 2015), which are statistical methods used



Fig. 9. Normalized weights variations of recording segments in the scale domain by using MI (blue dotted line) and SD (red dotted line) methods. Inset shows inflection points on the
normalized weights around 200 and 600 features when using W matrix; inset (b) shows the normalized weight variation according to the feature relevance in the scale domain; inset
(c) shows a well formed frequency band from 7 to 14 Hz when using W matrix.
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as filters in feature selection stage, which quantify the dependency be-
tween the class variable (Y) and the subset of selected features (X). Both
methods are similarly defined, the difference being related to the way of
evaluating this dependency. Hence,

SD ¼
X
y∈Y

X
z∈Z

p y; zð Þ p y; zð Þ
p yð Þp zð Þ ð14Þ

MI ¼
X
y∈Y

X
z∈Z

p y; zð Þ log p y; zð Þ
p yð Þp zð Þ: ð15Þ

Accordingly, the larger the SD or MI, which are referred to as
weights, the higher the dependency between the feature values and
Table 3
Experimental performance results for detection when applying a feature selection stage
with k-NN classifier, w = 15 s, and validation/test sets, by considering the relevant fea-
tures and the feature selection method.

Matrix n features–method k A (%) P (%) R (%) S (%)

S 600–SD 11 99/99 100/100 25/31 100/100
T 200–SD 351 99/99 100/100 77/74 100/100
T 600–SD 351 99/99 100/100 77/74 100/100
F 50–MI 241 99/99 100/100 77/74 100/100
G 25–MI 271 99/99 100/100 77/71 100/100
W 200–SD 11 99/99 100/100 44/49 100/100
W 600–SD 11 99/99 100/100 49/53 100/100
the class labels. Note that SD ismore sensitive, due to the absence of log-
arithmic compression of MI.

Fig. 7 shows the normalized weights for MI and SD in the time do-
main for the S and T matrices. Figs. 7(a) and (b) are related to the nor-
malized weights of the features. As it can be seen in Fig. 7(a), features
have a very similar and continuous smooth changing behavior, for
bothMI and SD curves, in the time domain for Smatrix, whilst for Tma-
trix in Fig. 7(b) there are some small inflection points on the SD curve
around 200 and 600 features. These changes in smoothness indicate
that the relationships between the desired class label and the distribution
of the subset containing such number of features change significantly
after these points. Therefore, subsets with these features may be enough
to containing the most relevant information related to the class, and
hence these subsets should be used for testing. Fig. 7(c), (d), (e) and
(f) shows the normalized weights according to feature relevance in the
time domain, however, from these plots, it was not possible to determine
which were the most relevant features for reducing the processing time.

Similarly, Fig. 8 shows the results in the frequency domain for high
and moderate resolution matrices F and G, respectively. From
Figs. 8(a) and (b), it is possible to distinguish a dramatic change in the
traces around 450 and225 features as themost significantwhen consid-
ering SD method. However, in terms of frequency, as it can be seen in
Figs. 8(c), (d), (e) and (f), it is possible to identify significant changes
in the normalized weights produced in the frequency band fb∈ (2,
7) Hz, although these changes are produced for both SD and MI, the
spectral components in MI have greater normalized weights values,
thereforeMI allows better discernment of themain features in frequen-
cy domain. This is consistent with the accepted spectral band for LP



Fig. 10. Results obtained by the DT classifier when considering T matrix. Inset (a) shows the 20 key features selected by DT algorithm given a total of 21 possible leafs (LP = 1 and
background noise = −1); inset (b) shows that several points can be used in each segment to define it as LP or background noise.
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events. For the Fmatrix, the number of points corresponding to the nor-
malizedweights within the frequency band 2 to 7 Hz is 50, as illustrated
in Fig. 8(c), whilst for the Gmatrix the number of points in this band is
only 25, as it can be observed in Fig. 8(d). Therefore, we decided to use
subsets containing these 50 features from the F matrix and 25 features
from the G matrix for testing.

Finally, Fig. 9(a) shows the variation of normalized weights in the
scale domain forW matrix. Similarly, to the analysis of Fig. 7, there are
also some small inflection points on the SD curve around 200 and 600
features, therefore, and following the same logic as in the case of
Fig. 7, subsets containing these number of features may be enough to
containing the most relevant information related to the class, and
hence subsetswith these number of features should be selected for test-
ing. On the other hand, when considering MI, features are strongly
correlated among them, and therefore it is not possible to identify any
significant changes in the normalized weights produced in the entire
frequency spectrum, as illustrated on Fig. 9(b). Nevertheless, in
Fig. 9(c) for SD it is possible to identify a region containing 150 features
within the frequency band fw∈ (7, 14) Hz where significant changes in
the normalized weights can be observed. Hence a subset with these
150 features was chose for testing. However, this is not consistent
with the spectral band accepted to contain the main information for
LP events, therefore, we also tested subset containing the previously
selected 200 and 600 features, in order to identify possible differences
between the selected subsets of features.
Table 3 summarizes the results of applying the feature selection
stage. We obtained a noticeable improvement in most of the perfor-
mance metrics when reducing the input space by using feature selec-
tion, which can be compared by analyzing the differences between
Tables 2 and 3. For S matrix, the improvement was on all terms, with
a remarkable improvement for R of 19%, meanwhile for T this improve-
mentwas better for R about 55%, by using 200 or 600 features. However,
for F andG, the value of R got worse (around 24% and 21% respectively),
even when for P it was improved in about 8%. Finally, for W, P and R
were improved in 40% and 12%, respectively.

5.3. Results using DT classifier

At this point, we decided to work with T and G matrices because
both matrices provided the best results for the k-NN classifier. The
goal of the DT algorithm is to create a model that predicts the value of
a target variable based on several input variables. Fig. 10(a), shows an
example of the top-down classification tree found by the DT algorithm
for Tmatrix, inwhich each internal node is labeledwith an input feature
and each branch in the tree represent a decision rule, there are edges to
children for each of the possible values of the feature. Each leaf of the
tree is labeled with a class or a probability distribution over the possible
classes. The algorithm learns the “best” possible tree by splitting the
source set into subsets based on test attributes. This process is repeated
on each derived subset in a recursive manner called recursive



Fig. 11. Results obtained by the DT classifier when considering G matrix: inset (a) shows the 34 key features selected by DT algorithm given a total of 35 possible leafs (LP = 1 and
background noise = −1); inset (b) shows that several points can be used in each segment to define it as LP or background noise; inset (c) shows that 2 frequencies peaks around
43 Hz and 46 Hz can also be used for identification of the event.
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partitioning. The recursion is completed when the subset at a node has
all the same value of the desired target variable, or when splitting no
longer adds value to the predictions. To determine the performance of
the tree, ameasurement of the homogeneity of the target variable with-
in the subsets, called Gini impurity Index, is used. The Gini impurity is a
measure of the statistical dispersion of wrong classifications according
to the distribution of labels in the subset. Refer to Bishop et al. (2006)
for more details on the algorithm.

In the case of Fig. 10(a), for Tmatrix, theDT algorithm found that the
main input features corresponding to the amplitude value at 1492 s, 4 s,
and 967 s. Each of the chosen features were those that algorithm found
havemore information andwere themost relevant for the classification.
Similarly, the decision rules for each branch in the tree, for example the
threshold value of 0.016 for feature amplitude in rule X1492, were also
found experimentally by the algorithm after several automatic optimi-
zations based on the data information. As a result, the DT algorithm
selected 20 key features, beginning from the top node with the rule
X1492 ≥ 0.016, making possible to classify any event into any one of the
21 possible classes we applied.

We considered 4 events, and most of these events consisted of 3 si,j
with w = 15 s, giving a total of 12 segments. Fig. 10(b) shows a mesh
representation of 18 segments: segments from 1 to 6 are examples of
background noise, which were not part of the target events; segments
from 7 to 10 correspond to the beginning of the events; segments
from 11 to 14 correspond to the main part of the events; and segments
from 15 to 18 contain the final part of the events. We observe that the
DT algorithm retrieved about 20 amplitude features in each segment
in order to predict the outcome. It is evident that the features that are
being selected correspond to amplitude comparisons in different rela-
tive timings of the segmented time window, which is consistent with
the usual increase in amplitude that can be observed in the envelope
of a typical LP event.



Fig. 12. Tree representation andmain features retrievedby considering feature selectionmethods: inset (a) shows the 5 key features selected by the feature selectionmethods given a total
of 6 possible leafs; inset (b) shows the equivalent 5 points corresponding to the features that are verified for each segment; inset (c) shows the 2 key features selected by cross-validation
method given a total of 3 possible leafs; inset (d) shows the equivalent 2 frequency features that verified at 9.4 Hz and 3.3 Hz in each segment; inset (e) shows 3 key features selected by
pruning method given a total of 4 possible leafs; inset (d) shows the equivalent 3 frequencies features that are verified at 9.4 Hz, 3.5 Hz, and 3.1 Hz in each segment.
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Meanwhile for the G matrix, Fig. 11(a) shows the tree given by the
DT algorithm, which selected 34 key features, beginning from the top
node,with rule X49 ≥ 2.4e− 8, and classifying into oneof the 34 features.
We followed the samemethodology used for the time domain to repre-
sent segments in mesh form, for instance, in Fig. 11(b) we considered 4
events, which were represented by 12 segments related to the events
and 6 additional segments corresponding to background noise. We ob-
served that the DT algorithmwas able to verify 30 features in each gi,j in
order to predict the outcome. An interesting observation is that in this
case, this representation shows that not only the band in the range (2,



Table 4
Experimental performance results for detection by applying feature selection stage with
DT classifier, w = 15 s, and validation/test sets, by considering the relevant features and
feature selection method.

Matrix N. features–method A (%) P (%) R (%) S (%)

T 20–Default 99/99 100/100 95/95 100/100
T 5–Cross-validation 99/99 100/100 90/86 100/100
T 5–Pruning 99/99 100/100 90/88 100/100
G 34–Default 99/99 100/100 99/99 99/100
G 2–Cross-validation 99/99 100/100 94/94 100/100
G 3–Pruning 99/99 100/100 92/94 100/100
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14) Hz is the relevant one since the classifier also found information re-
lated to the event contained in the high frequency band (40, 45) Hz, as
illustrated in Fig. 11c. Although the source of this phenomenon is still
unclear at themoment and requires further investigation, this informa-
tion can also be used to differentiate real events from background noise,
since the spectral content of the segments containing the event is great-
er than the spectral content of the noise.

5.3.1. Reduced number of features
Pruning and cross-validation are used as embedded methods

(Esposito et al., 1997; Dai, 2013) in feature selection stage, which are
in charge to control the leafiness of decision trees by removing the un-
necessary leaf nodes (features) to classify the instances. These methods
reduce the complexity of the tree, with its corresponding improvement
in predictive accuracy. For Pruning method, trees are based on an opti-
mal pruning scheme that first prunes branches giving less improvement
in error cost. Meanwhile, cross-validation method consists of
partitioning a dataset into n subsets and then running decision tree al-
gorithm n times, each time using a different training set and validating
the results on each subset, and corroborated with the improvement in
error cost.

We applied pruning and cross-validationmethods to Tmatrix in the
time domain, in order to control leafiness in DT. The DT algorithm re-
trieved 5 key features with both methods, beginning from the top
node, with rule X1492 ≥ 0.016, which allowed classification into one of
the 6 possible leafs, as depicted in Fig. 12(a).

Similarly, in the frequency domain, by considering the Gmatrix and
by using cross-validation, the DT algorithm selected only 2 key features,
beginning from the top node, with rule X49 ≥ 2.4e− 8 (this feature cor-
responding to the amplitude value at 9.4 Hz), and X18 ≥ 2.4e− 8 (corre-
sponding to the amplitude value at 3.3 Hz), and allowed classification
into one of the 3 possible leafs, as depicted in Fig. 12(c). Meanwhile,
when using the pruning method, the DT algorithm selected 3 key fea-
tures, the top node was kept with the same rule, and two more rules
were defined, X29 ≥ 3.8e − 3 and X17 ≥ 4.7e − 3, which corresponded
to the amplitude value at 3.5 Hz and 3.1 Hz, respectively, and the classi-
fication was into one of the 4 possible leafs, as depicted in Fig. 12(f).

Table 4 shows the results obtained with the validation set, which
were confirmed with the test set. We obtained the best results with
original features by using G, however, good performance was obtained
by using methods to control depth (feature selection-embedded), just
considering 5, 3, or 2 key features, depending of the case.

In order to validate the preprocessing block, we evaluated the per-
formance of the proposed system with k-NN classifier, and only using
one of the considerations in the preprocessing block at the time (either
using filter or normalization). The results, in each case, got worse per-
formance than when all the considerations in the preprocessing block
were used, the results for P value were in the order of 10% lower for
both classification and detection stages.

6. Discussion and conclusions

Previous works have demonstrated the success and usefulness of
machine learning techniques applied to the problem of classifying
events from a volcano, without considering real-time requirements
(Falsaperla et al., 1996; Langer et al., 2003).Most reports do not fully de-
tail their methodology, whichmakes hard to identify the main parame-
ters to be considered for a real-time strategy (Langer et al., 2006;
Curilem et al., 2009; Messina and Langer, 2011; Esposito et al., 2008;
Ohrnberger, 2001; Ruano et al., 2014).

In our case, several possible features were extracted from the seis-
mological signal in order to detect and classify events. In this regard,
in terms of temporal features, Fig. 10(b) shows that the most relevant
features are those located at the beginning, middle and end of each seg-
ment, therefore a subsampling amplitude detector in the observedwin-
dowmay be enough for event detection, according to themain featured
retrieved by the DT algorithm. Whereas in the case of the spectral fea-
tures, as illustrated by the Fourier representation from Fig. 11(b), the
most relevant features are concentratedwithin the 4 to 10Hz frequency
baseband, which agrees with the frequency bands mentioned in previ-
ous studies, however it is also possible to observe some relevant infor-
mation related to the event around the 40 Hz, which has not been
noted in previous studies and therefore require a further analysis. Ob-
serving Fig. 12(b), it is clear that the amplitude of features is more or
less uniformly distributed for the sampling windows in the band be-
tween 4 and 10 Hz, therefore using a sample amplitude detector in
such frequency band may be sufficient for event detection.

LP events and VT earthquakes have proven to be key elements for
monitoring any volcano, including Cotopaxi, since they provide impor-
tant information about the volcano status. With an appropriate moni-
toring and detection, a real-time system will allow launching an
effectiveness early warning. The dataset provided by IGEPN contains
mostly LP events from Cotopaxi Volcano. At this stagewewere interest-
ed in develop a detection system based on classification, and for that
purpose, we have to define a characterization of the most prevalent
events, in this case, LP events. However, in futureworkswe are interest-
ed in extending the current scope towards an automatic recognition
system for LP and VT. However we will require a data set containing
enough VT events for training the algorithms when developing such
system.

Our proposed approach detects LP events with high accuracy and re-
duced computational requirements, and it is developed towards its use
in real-time analysis, rather than data in blocks or off-line based ap-
proaches. We considered LP event detection based on classification,
and in this case, the use of detection criteria instead of classification
criteria gave significant advantage in the free parameters tuning. We
worked with supervised classification, since this is a highly user-
defined and application driven solid approach.

Our experiments have shown that the best results can be obtained in
the frequency domain, by using F or G matrices, instead of in the time
and scale domains, and by using DT classifier instead of k-NN classifier.
The results also show that the system has reached an accuracy of 99% in
the detection stage. Regarding the scheme for the event detector based
on classification proposed in Fig. 3, the feature selection block, by using
filter methods, yielded a significant improvement with k-NN classifier,
in terms of P at least in 10%, whilst for R, without feature selection
block, it presented different values for the validation and test sets
(33% and 92%, respectively), a difference of around 60%. Meanwhile,
by using this block for validation and test sets, detection reached an R
below 77%, with a noticeable reduction of features from 513 to 50 for
Fmatrix, and from 257 to 25 for Gmatrix, mainly due to the identifica-
tion of a frequency band fb∈ (2,7) Hz, which contains the most relevant
features. Moreover, embedded methods got worse performance with
DT classifier, in terms of R in 5%, the rest of the parameters resulted sim-
ilar by considering G matrix, and a considerable reduction of features
was achieved, resulting in 5 and 2 main features in the time and fre-
quency domain, respectively. If the frequency content of LP events
was to change over time, it still would be possible to distinguish LP
from background noise, since the spectral content of the noise has a
small amplitude compared to the LP spectral content. This feature
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selection strategy has permitted reducing the processing time from
3 min to 2 min, approximately.

As future work, we are interested in developing a new strategy by
extracting features of each si,j in the time, frequency, and scale domain,
in order to identify the main features for reducing the processing time
avoiding the overfitting,we also plan to include in our experiments Sup-
port Vector Machine (SVM) (Schölkopf et al., 2000; Chang and Lin,
2001), to allow discrimination between LP events from VT earthquakes.
Wewant to improve the classification rate by using Digital Communica-
tion and Codification Theory (Zhang, 2011), specifically, turbo codifica-
tion techniques for error control in the classifiers.
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